تحلیل کارایی اقتصادی بنگاههای دانش
با استفاده از مزر تصادفی هزینه کوششهای تحقیقاتی

چکیده

با توجه به اینکه ستادهای بنگاههای دانش منتشر نمی‌آورند، منحصر به فرد، ناهمسان، ناشیگان و سیالاند و به طور کامل و دقیق قابل انتداز پذیری نیستند، با روش‌های متنی و متانائی ترسیم می‌شوند که با درستی و بدون خطا اندازه‌گیری و تحلیل کرد، تجربیات هدف مقاله حاضر ارائه و بررسی می‌گردد. برای اندازه‌گیری و تحلیل کارایی اقتصادی بنگاههای دانش است. این روش مزر تصادفی هزینه کوششهای تحقیقاتی، نامیده شده است. استفاده تجربی از این روش برای بنگاههای دانش کشور ایران این نشان می‌دهد که با احتیاط زیاد می‌توان و جدول ناکارایی اقتصادی در بنگاههای دانش را تایید کرد. همچنین، بررسی نتایج تخمین نشان می‌دهد که بعضی از بیزگیری‌های اقتصادی بنگاههای دانش از جمله نوع مالیات، انداده و همکاری تحقیقاتی با مراکز غیردانشگاهی در موضوع ناکارایی اقتصادی اینجا نقش دارند.

کلید واژگان: بنگاه دانش، کارایی اقتصادی، تحلیل مزر تصادفی تولید، تحلیل مزر تصادفی هزینه، کوششهای تحقیقاتی

* مسئول مکاتبات: entpost@yahoo.com
دریافت مقاله: 1387/9/25 پذیرش مقاله: 1388/9/20
مقدمه

طبق تعريف، اقتصاد مبتنی بر دانش آن نظام اقتصادی است که تمام فعالیت‌ها در آن به طور مستقیم بتواند توسعه و استفاده از دانش و اطلاعات جدید متکی است. (OECD, 1996; Entezari, 2007; Porter and Stern, 2000; Luintel and Khan, 2005; Coupé, 2003). (Criscuolo et al., 2005; Jaffe and Trajtenberg, 2002)

توسعه و توسعه اقتصاد مبتنی بر دانش وابسته به عملکرد دانش‌های دانش و مبتنی بر دانش است. مهم‌ترین روش به‌ویژه عملکرد این بی‌گاه به‌ویژه کاراپی اقتصادی آن‌هاست. برای به‌ویژه کاراپی اقتصادی ابتدا باید آن را انجام‌گیری و عواملی که وجود آن‌ها ناگرایی را شناسایی و تحلیل کرده. طبق روش‌های مرسوم، برای انجام‌گیری و تحلیل کاراپی به انجام‌گیری استانداردهای دانش‌های دانش‌های دانش‌های فراوانی تولید دانش را بروش‌های مختلف Porter and Stern, 2000; Luintel (and Khan, 2005

dیگر) (Coupé, 2003) استاندارد این فراوانی را با تعداد حق امتیاز انتخاب‌های. بعضی (Criscuolo et al., 2005; Jaffe and Trajtenberg, 2002) به دلیل خواص ویژه کلکالی دانش انجام‌گیری استاندارد تولید دانش کار بسیار دشواری است. چون محصولات بی‌گاه‌های دانش به‌ویژه، نوآوران، ناخواندن (در درون یک بی‌گاه) ناهماهنگ (در بین بی‌گاه‌ها) و نامعلوم و عدم‌آن‌ها محصولات به فردان و محصولات قبلی خود بی‌گاه دانش و محصولات بی‌گاه‌های دانش دیگر قابل مقایسه نیستند. یک نمونه، هر انتخابی به‌ویژه فرد است و از نظر کمی و ارزش اقتصادی کاملاً با اختلافات قبلی همان بی‌گاه و
احتمالات بی‌گاه‌های دیگر متفاوت است. یک اختراع ممکن است چنین برابر اختراع قبلی
خود بی‌گاه و اختراع بی‌گاه رقیب ارزش داشته باشد. علاوه بر این، ستادهای بی‌گاه داشت سیالاند. و بخش عمده‌ای از آنها قابل کنترل و حفظ در
درون بی‌گاه نیستند و به راحتی از مرزهای بی‌گاه داشت عبور می‌کنند و عاید رقیب و کل جامعه
می‌شوند. بنابراین، از روش‌های ممکن بر ستادهای فیزیکی نمی‌توان برای اندازه‌گیری و تحلیل
کارایی فنی و اقتصادی بی‌گاه‌های داشت استفاده کرد. یک روش دیگر که برای
اندازه‌گیری ستاده بی‌گاه داشت مطلوب به نظر می‌رسد، تعيين ارزش پولی ستاد، هست. اما
محققان (Nurmi,1998) نشان داده‌اند که بخش اعظمی از ستادهای بی‌گاه داشت
ماهیت عمومی یا شب عمومی دارند وارد بازار داشت نمی‌شوند و قابل تجزیه سازی نیستند و
به طور آزاد از مرزهای بی‌گاه داشت عبور می‌کنند و به جامعه مهربانی می‌شوند. بنابراین،
بخش عمده‌ای از محصولات داشت ارزش فرا بازاری دارند و در چارچوب بازار از یکت
آنها درآمده عادی بی‌گاه‌های داشت نمی‌شود. بنابراین، اگر صرف آن ارزش بازاری محصولات
بی‌گاه‌های داشت در محاسبه منظر شود، کارایی بی‌گاه داشت کمتر از حد واقعی برآورد می‌شود.
محاسبه کارایی بر اساس این روش محاسبه ستادها را کارایی فرا به‌طور مستقیم می‌توان نامید. کارایی
(Entezari et al., 2007) خصوصی بی‌گاه‌های داشت اخیراً توسط اندازه‌گیری و همکارانش (2007)
محاسبه و تحلیل شده است.

حال این سوال مطرح می‌شود که با توجه به اینکه بی‌گاه‌های داشت بر بخش عمده‌ای از
محصولات خود کنترل ندارند، با چه انتخابهای بی‌گاه می‌توانند نتایج خود ادامه دهند، یا اصولاً چگونه
ادامه حیات می‌دهند؟ پاسخ این سوال می‌تواند با دسته‌بندی و بررسی جبران
سرزی راه با تولیدکنندگان داشت عمومی ممکن می‌کند. در واقع، ستادهای نهایی
بی‌گاه‌های داشت که اندازه‌گیری و همکارانش (Entezari et al., 2007) نامیده‌اند، از حاصل جمع درآمدبی‌گاه بازاری و کمک‌های دوست و مردمی به دست می‌آید. در
پاسخ به این سوال که دولت سری‌زی‌های دیگر پیگاهها چگونه اندازه‌گیری می‌کند، با کشف که
سری‌زی‌های داشت از بی‌گاه داشت به جامعه و از جامعه به بی‌گاه نامیمین است و نمی‌توان آن را

به طور دقیق انداره‌گیری کردن و کمک‌های دانش به بناهای دانش بر اساس مشکلات جاری آنها صورت می‌گیرد و ممکن است تاریکی م重心 داری با سرسیرها ناشیه باشد.

با در نظر گرفتن درآمدیات عملیاتی (درآمدیات بازاری و کمک‌های دولتی و مردمی) به عنوان ستانده تهیه، کارآیی بناهای دانش بیش از اندازه تخمین زده میشود. در واقع با کمک‌های دولتی بیشتر بناهای دانش ناکام‌ند که در جلوه می‌کنند. در هر دو نوع ابزاری چگونه می‌توان کارآیی واقعی بناهای دانش را استفاده کرده و تحلیل کرد؟ هدف مقاله حاضر پاسخ به همین سوال است. برای این منظور، ضمن تعریف مفهوم "تایب هزینه کوششهای تحقیقاتی" روش جدیدی برای انداره‌گیری و تحلیل کارآیی اقتصادی بناهای دانش ارائه شده است.

در قسمت اول مقاله با نویجه به مقاله اندازه‌گیری و همکاران (Entezari et al., 2007) تایب تولید بناهای دانش فرموله شده است. در قسمت دوم با استفاده از تحلیل دوگان تولید و هزینه در اقتصاد خرد، "نایب هزینه کوششهای تحقیقاتی" از "تایب کوششهای تحقیقاتی" استخراج شده است; در قسمت سوم الگوی "مرز تصادفی هزینه کوششهای تحقیقاتی" معرفی و روش تخمین آن ارائه شده است. در قسمت چهارم "مرز تصادفی هزینه کوششهای تحقیقاتی" تخمین زده شده و عوامل مؤثر بر کارآیی هزینه بررسی شده است. در نهایت، با توجه به تخمین‌های اقتصادی‌نجیکه‌ریکی به عمل آمده است.

تابع تولید دانش و تابع کوششهای تحقیقاتی

بنگاه‌های دانش سازمان‌های مبتنی بر پروژه‌های هستند و بر پایه پروژه‌های تحقیقاتی مدیریت می‌شوند. بدین معنا که فعالیتهای تولید دانش اشکارا در آنها بر پایه پروژه‌های تحقیقاتی سازمان‌دهی، برنامه‌ریزی و اجرای می‌شود. منابع انسانی و مالی در دسترس بنگاه دانش نیز براساس پروژه‌های تحقیقاتی توزیع و بهره‌برداری می‌شود. دانشگاه‌ها (محققان، کمک محققان و تکنیسین‌ها) فعال در پروژه‌های تحقیقاتی گروه پژوهشی دانشگاه می‌شوند. (Wang, 2004
با فرض اینکه بنگاه i را به پروژه تحقیقاتی j نفر از کمک محققان r_{ij}، (r_{ij}), $j=1,2,..., p$, نفر از کمک محققان r_{ij} و r_{ij} وارد از کل سرمایه فیزیکی (k_{ij}, k_{ij}) در دسترس خود را به پروژه تحقیقاتی j تخصیص دهد و واحد داشت آشکار جدید تولید کند، نتایج تولید داشت آشکار در سطح پیک پروژه تحقیقاتی (j) در بنگاه i را به صورت رابطه (1) می‌توان نوشت:

$$y_{ij} = f_j(r_{ij}, ra_{ij}, k_{ij}; \alpha), \quad j = 1,2,..., p$$

(1)

فناوری تولید این دانش در سطح پروژه تحقیقاتی به گونه‌ای است که نهادها تا حدودی جانشینی یکدیگر هستند. اما جانشینی کامل وجود ندارد. فرض می‌شود که تابع تولید دانش آشکار (1) پوسته، یکنواخت و همگن است. در این تابع α بیانگر بردار کشی سنگینه در پروژه نسبت به نهادهای مورد استفاده در همان پروژه است. عناصر بردار α همگی پژوه‌گر از صفر یا مساوی با آن هستند. نشان دهنده تعداد پروژه‌های تحقیقاتی است که در یک دوره معلین در بنگاه i اجرای متعددی.

هر پروژه تحقیقاتی با هزینه معنی‌انگیز اجرا می‌شود که مبلغ آن به میزان نهاده های مصرف شده و قیمت نهاده ها افزایش دیگر در کل خصوصیات اجرای یک پروژه تحقیقاتی را به صورت رابطه (2) می‌توان نوشت:

$$c_{ij} = w_{ij} r_{ij} + w_{ij} r_{ij} + w_{ij} k_{ij}, \quad j = 1,2,..., p$$

(2)

در این رابطه w_{ij} و w_{ij} و w_{ij} به ترتیب نشان دهنده نرخ قیمت نهاده محقق، کمک محقق و سرمایه فیزیکی در بنگاه i هستند.

کل دانش تولید شده در بنگاه i به از حاصل جمع تولید دانش تولید شده در پروژه‌های تحقیقاتی است. منظور از تعامل گروه‌های تحقیقاتی با یکدیگر دانش جدید دیگری تولید می‌شود که در نتیجه تولید پروژه‌های تحقیقاتی افرادی می‌باشد. نظر قرار نمی‌گیرد (خاصیت هم‌انفرادی).

$$y_i = y_0 + \sum_{j=1}^{p} y_{ij},$$

(3)
در رابطه (۱) مقادیر داشت جدید فرا پرپژه‌ای است که در اثر تغییر گروه‌های تحقیقاتی به عنوان اثرهای هم‌افزایی ایجاد می‌شود. همچنین، نهایتهای مورد استفاده در بنگاه داشت بیشتر از جمع نهایتهای است که در پرپژه‌های انفرادی مصرف می‌شود. جوان‌الاً علاوه بر اینکه پرپژه‌ها به پشتیبانی نیروی انسانی خدماتی تازه‌ترندند سیستم بنگاه داشت نیز به کارگیری ماهر در حد محققان تازه‌تر است. ثانیاً برای برنامه‌ریزی تحقیقاتی، تجربیاتی نتایج تحقیقات و سبایی از فعالیتهای فرا پرپژه‌ای دیگر به سرمایه‌های نیاز است، اما در تابع تولید پرپژه‌ها وارد نمی‌شوند. بنابراین، مقادیر کل نهایتهای مورد استفاده برای تولید سیستم داده‌ای باید نیز به صورت روابط (۲) محاسبه‌ی می‌شود.

\[
\begin{align*}
 r_i &= r_{0i} + \sum_{j=1}^{s} r_{ij} \\
 r_{ai} &= r_{a0i} + \sum_{j=1}^{s} r_{aij} \\
 k_i &= k_{0i} + \sum_{j=1}^{s} k_{ij}
\end{align*}
\]

در این رابطه، \(r_{ai} \) تعداد نیروی انسانی پشتیبانی در بنگاه داشت است که اجرای تمام پرپژه‌ها با پشتیبانی می‌کند. \(r_{ai} \) به ترتیب بانگر تعداد محققان و کمک محققانی است که در ستاد بنگاه داشت به صورت تحقیقاتی، فعالیت سیستم کمک‌می‌کند. در نتیجه، مقادیر سرمایه‌های فیزیکی را نشان می‌دهد که به طور فرا پرپژه‌ای مصرف می‌شود. با توجه به روابط (۲) و (۳)، تابع تولید بنگاه داشت را به صورت رابطه (۵) می‌توان نوشت:

\[
y_1 = f\left(r_1, r_{a1}, k_1, \beta \right)
\]

بنابراین، هزینه بنگاه داشت نیز بسیار بیشتر از جمع هزینه پرپژه‌های تحقیقاتی است. خط هزینه بنگاه داشت را به صورت رابطه (۶) می‌توان نوشت:

\[
c_i = W_i + W_{ri}r_i + W_{rri}r_{ai} + W_{ki}k_i
\]

در این رابطه، \(W_i, W_{ri}, W_{rri}, W_{ki} \) به ترتیب، بانگر کل هزینه بنگاه داشت و ترخ دستمزد نیروی انسانی پشتیبانی است.
در رابطه (3) $\lambda_i y_i$ متناسب با تعداد پروژه‌های تحقیقاتی است که هر کسی می‌شوند. هر چقدر تعداد پروژه‌های تحقیقاتی و تعداد گروه‌های تحقیقاتی بیشتر باشد، دانش‌ها و پروژه‌ها بیشتر تولید می‌شود. اگر نرخ انجام دانش در اثر تعداد یک گروه تحقیقاتی با گروه‌های تحقیقاتی دیگر در پنگاه دانش i را با λ_i نشان دهیم، دانش

فا پروژه‌های معدال $\lambda = \lambda_i p_i$ خواهد بود.

با فرض اینکه متوسط دانش آموزان پروزه‌ای شده به وسیله هر پروزه [یا واحد فعالیت تحقیقاتی] در پنگاه دانش i به میزان \overline{y} باشد، کل دانش آموزان پروزه‌ای شده به وسیله پنگاه دانش بر حسب تعداد پروژه‌های تحقیقاتی [یا فعالیت‌های تحقیقاتی] را به صورت رابطه (7)

می‌توان تعریف و اندازه‌گیری کرد.

$$y_i = \lambda_i p_i + p_i \overline{y}_i = p_i (\lambda_i + \overline{y}_i)$$ \hspace{1cm} (7)

در این رابطه، p_i تعداد پروژه‌های تحقیقاتی [یا فعالیت‌های تحقیقاتی] در پنگاه دانش i را نشان می‌دهد. با استفاده از روابط (5) و (7) تابع تولید پنگاه دانش را به صورت رابطه (8) می‌توان نوشت:

$$p_i (\lambda_i + \overline{y}_i) = f (t, r, ra, k; \beta)$$ \hspace{1cm} (8)

با فرض اینکه در صمت دانتش نظام استاندارد کمیت برای تغییر پروزه تحقیقاتی و دانش حاصل از آن وجود داشته باشد، می‌توان $Q > 0$ به عنوان معیار استاندارد کمیت تحقیقات در نظر گرفت که در صمت دانش برای تمام پنگاه‌های دانش همسان است. با توجه به رابطه (8)، تابع کوشش‌های تحقیقاتی را به صورت رابطه (9) می‌توان استخراج کرد:

$$p = \left(\frac{1}{\lambda + \overline{y}}\right) f (t, r, ra, k; \beta) = F (t, r, ra, k; \gamma)$$ \hspace{1cm} (9)

این رابطه نشان می‌دهد که هر چقدر استاندارد کمیت تحقیقات در صمت دانش بالاتر باشد، تعداد پروژه‌های کمتری تغییر و اجرای می‌شود. اگر پروژه‌های تحقیقاتی بدون توجه به استاندارد کمیت تدوین و اجرای شوند، به‌طوری که کوشش‌های تحقیقاتی کاهش پیدا می‌کند.
مرز هزینه کوششهای تحقیقاتی در بنگاه دانش

همچنان که بیان شد، دانش آموزان به عنوان ستاد برترهای تحقیقاتی و ستاده بنگاه دانش ناملموس، ناهنجار و بسیار سیال است، به گونه‌ای که بخش و سپس از آن را نمی‌توان به طور واقعی تحت کنترل در آورد و اندازه‌گیری کرد. به دلیل کالای عمومی یا بی‌توجهی عمومی یا بی‌توجهی به کالا یا شبکه، نمی‌توان دانش و نبودن قیمت بازاری برای آن، اندازه‌گیری پولی آن نیز ممکن است ارزش آن را بیشتر یا کمتر از ارزش واقعی نشان دهد. اگر نمی‌توان ستاده را درست اندازه‌گیری کرد، نمی‌توان کارایی فنی و اقتصادی آن را درست اندازه‌گیری و تحلیل کرد. برای حل نسبی این مسئله مفهوم تابع هزینه کوششهای تحقیقاتی معرفی و برای اندازه‌گیری و تحلیل کارایی اقتصادی بنگاههای دانش ارائه می‌شود.

با فرض اینکه هدف بنگاه دانش حداکثر حداکثر سازی هزینه با کوششهای تحقیقاتی معین است، مسئله به‌هینه‌پایی بنگاه دانش با استفاده از معنای (9) را به صورت رابطه (10) می‌توان ترکیب داد:

\[\min c_i = w_1 l_i + w_2 r_i + w_3 r_i + w_4 k_i \]

\[s.t. : p = \left(\frac{1}{\lambda + \gamma} \right) f (l, r, r, r, k; \beta) \]

برای حل مسئله به‌هینه با (10) تابع لاگرانژ را به صورت رابطه (11) می‌توان ترکیب داد.

\[L(l, r, r, r, k, \eta) = w_0 l + w_1 r + w_2 r + w_3 k - \eta (f (l, r, r, r, k; \alpha) - p (\lambda + \gamma)) \]

(11)

با دیفرانسیل‌گیری جزئی از تابع لاگرانژ نسبت به نهادها و ضریب لاغرانژ دستگاه معادلات (12) به دست می‌آید:
با فرض اینکه تابع تولید دانش F و تابع کوشش‌های تحقیقاتی از نوع کاب دیگلاس است، شرط لازم و کافی برای حداقل سازی هزینه کوشش‌های تحقیقاتی برقرار است و با ممیز بودن پارامترهای تابع باشته و هزینه‌های واحد نیرو انسانی و سرمایه، جواب پیدا برای دستگاه معادلات (12) وجود خواهد داشت.

بنابراین، با حل دستگاه معادلات (12) نسبت به نهایت تولید دانش (I_{k}, r_{l}, k_{p})، در حسب نرخ قیمت‌های نهایت‌ها و میزان کوشش تحقیقاتی و قرار دادن آنها در خط هزینه، می‌توان «تابع هزینه کوشش‌های تحقیقاتی» را به صورت رابطه (13) به دست آورد:

$$c(w, y, \lambda) = c_0 w_0 \alpha w_1 \beta w_2 \gamma w_3 \pi \kappa (\lambda + \bar{y})$$

(13)

با ثابت در نظر گرفتن متغیرهای آن و λ میان بگاه‌های دانش مستقیم هزینه (13) را به صورت تابع هزینه (14) نوشته. تابع هزینه (14) را (مرز هزینه کوشش‌های تحقیقاتی) در بگاه دانش مستقیمی بهشتی که با توجه به قیمت‌های نهایت‌ها کمترین هزینه ممکن برای اجرای پروژه‌ها را به عنوان تغییرات استاندارد تولید دانش اشکال نشان می‌دهد.

$$c(w, p, \lambda) = c_0 w_0 \alpha w_1 \beta w_2 \gamma w_3 \pi \kappa$$

(14)
اندازه‌گیری و تحلیل کارایی هزینه

در قسمت قبل فرض بر این بود که بنگاه‌های دانش بر روی مرز هزینه (14) که سطح حداقل کارایی هزینه را نشان می‌دهد. عمل می‌کنند، اما در عالم واقع این گونه نیست. بنگاه‌های دانش به دلایل مدیریتی و پژوهشی خاص، عوامل برنامه و شوکها و عوامل نادیده گرفته نمی‌توانند در سطح مرز هزینه (مرز حداقل هزینه ممکن) تولید کنند. بنابراین در عمل احتمال جایگزینی از مرز (14) وجود دارد. انحراف از مرز بهینه را به دو مؤلفه ناکارایی (\(u\)) با عامل شکست در بهینه بازی و شوک‌های تصادفی (\(v\)) می‌توان تجزیه کرد (1977). اگر نیازمندی تصادفی بهینه هزینه (\(c\)) و هزینه واقعی (\(c_v\)) را می‌توان به دو نظر قرار دهم، اختلاف این دو سطح هزینه در بنگاه‌های دانش را با رابطه (15) می‌توان نشان داد:

\[
\begin{align*}
 c_i &= c(w_i, p_i; \omega) + v_i + u_i \\
 c_i'' &= c(w_i, p_i; \omega) \\
 c_i' &= c(w_i, p_i; \omega) + v_i
\end{align*}
\]

در این رابطه، \(v_i\) نشان دهنده عوامل تصادفی و خطای اندازه‌گیری است که فرض می‌شود \(v_i \sim N(0, \sigma_v^2)\) است. \((\sigma_v^2)\) احتمالی بنابراین، \(c_i\) بالا گرفته می‌شود تا هزینه است. \(u_i\) نشان دهنده میانگین ناکارایی به عنوان یک عامل نامه در فرم 1 یک‌تولید است که همکاری، به‌همراه یک صفر بی‌همبستگی با آن است (\(\sigma_{u,v} = 0\))، فرضیه این است که میانگین ناکارایی را نشان می‌دهد. \(u_i\) به عنوان یک نظیر نامگذاری دارای توزیع احتمال است. اما به دلیل تغییرات در هزینه و توزیع‌های جمع‌یافته و نمادین، بسیاری از روشهای نمادین توزیع کامل نمی‌تواند در نظر گرفته شود. بنابراین، رابطه (15) را می‌توان با روش حداکثر رشد درست‌نمایی تست کرد. از این رو، محققان (1977) روشهای حداکثر درست‌نمایی را بر مبنای توزیع‌های یک‌طرفه مانند توزیع نصف نرمال، توزیع نرمال یک‌طرفه، توزیع نمایی و توزیع گاما تست داده‌اند. مسئله حداکثر درست‌نمایی برای توزیع نرمال برای راه‌های با یک صورت زیر می‌توان نوشته (Battese and Cora, 1977):
تحلیل کارایی اقتصادی پیگاه‌های دانش با استفاده از ...

\[\max \ln L(\omega, \sigma^2, \gamma) = -\frac{N}{2} \ln(\frac{\pi}{2}) - \ln(\sigma^2) + \sum_{i=1}^{N} \ln(1 - \Phi(s_i)) \]

\[-\frac{1}{2} \sigma^2 \sum_{i=1}^{N} (c_i - c(w, p; \omega))^2 \]

\[s_i = \left(\frac{c_i - c(w, p; \omega)}{\sigma} \right) \left(\frac{\gamma}{1 - \gamma} \right)^{1/2}, \sigma^2 = \sigma_u^2 + \sigma_w^2, \gamma = \frac{\sigma_u^2}{\sigma_w^2} \]

با حل معادله (16) نسبت به \(\gamma \) به دست آورده تا هزینه دریافتی درستنمایی باالا، آزمون وجود کارایی هزینه در بینگاه دانش است. فرضیه وجود مؤلفه ناکارایی هزینه را به صورت زیر می‌توان تشریح داد:

\[H_0 : \gamma = 0 \]

\[H_a : \gamma \neq 0 \]

آماره آزمون LR نام دارد که از طریق فرمول زیر محاسبه می‌شود:

\[-2[\ln L_R - \ln L_{R,0}] \sim \chi^2_1 \]

ارزش تابع لگاریتم حداکثر درستنمایی در حالت \(\gamma = 0 \) است.

فقط وقتی محاسبه کارایی هزینه بینگاهها منطقی است که فرضیه صفر رد شود. در صورت رد

\[H_0 \]

شدن فرضیه صفر و با فرض توزیع نرمال برای متغیر ناکارایی \(u_i \) و درجه کارایی را از

(18) (Coelli and Battese, 1998) می‌توان محاسبه کرد. البته، با استفاده از

رنگه‌های متغیران رابطه‌های متغیرتی برای \(\gamma \)

به دست می‌آید.

\[E[u_i | \varepsilon_i] = -\gamma \varepsilon_i + \sigma_u \left(\frac{\phi(\varepsilon_i / \sigma_u)}{1 - \Phi(\varepsilon_i / \sigma_u)} \right) \]

\[TE_i = E[\exp(-u_i) | \varepsilon_i] = \left(\frac{1 - \phi(\varepsilon_i + \gamma \varepsilon_i / \sigma_u)}{1 - \Phi(\varepsilon_i + \gamma \varepsilon_i / \sigma_u)} \right) \exp(\gamma \varepsilon_i + \frac{1}{2} \sigma_u^2) \]

\[\varepsilon_i = v_i + u_i = \log(\gamma_i) - x_i \beta \]

\[\sigma_u = \sqrt{\gamma(1 - \gamma)\sigma^2} \]
در روابط راد داده (x) و φi(x) به ترتیب نشان دهنده تابع توزیع و تابع چگالی نرمال استاندارد متغیر تصادفی هستند.

کارایی یا تاکارایی بینگاه‌های داخل فقط ناشی از عملکرد مدیریت آنها نیست، بلکه به ویژگی‌های داخلی بینگاه‌های داخل مانند میزان تجهیزات، نوع مالکیت، اندازه و ظاهری آنها، میزان سرمایه‌ای اجتماعی، توانایی همکاری با دیگر سازمان‌ها و عوامل محیطی نیز بستگی دارد. این عوامل جزو هدف‌های و سمت‌های بینگاه داخل نیستند. بنابراین، تاکارایی (ui) در بینگاه داخل i می‌توان با توجه به تغییر عوامل برون‌نوازی (x) مد نظر قرار داده شود:

\[u_i = u_i(z, \delta) \]

و اینکه توزیع 0 ≤ ui به عنوان پرونده‌ای بهینه می‌شود که میانگین ui واریانس آن به هر دو آنها تابعی از این عوامل (x) هستند: یعنی:

\[u_i \sim N^*(\mu_i(z, \delta), \sigma^2_i(z; \rho)) \]

رابطه (20) حالت عمومی توزیع ui به عنوان یک توزیع نرمال بریده را نشان می‌دهد. محققان حالت‌های خاصی از آن را در تحقیقات تجاری به کار گرفته‌اند. با در نظر گرفتن این موضوع رابطه (15) را به صورت معادله (21) می‌توان نوشت:

\[c_i = c(w_i, p_i; \alpha) + v_i + u_i(z; \delta) \]

این معادله را با استفاده از دو روش در مراحل‌های و یک مرحله‌ای می‌توان تخمین زد. در روش دو مرحله‌ای ابتدا بدون توجه به عوامل اثرگذار بر تاکارایی، پارامترهای معادله مرز تصادفی تخمین زده می‌شود. آن گاه به میانگین مقدارهای مستند در پایتخت و تابع تاکارایی پارامترهای تابع تاکارایی برآورد می‌شود. اما در روش یک مرحله‌ای پارامترهای هر در مزرعه و عوامل مؤثر بکارایی هزینه به طور همزمان در قالب یک تعداد معادله تخمین زده می‌شوند.

بعضی از محققان (2002) نشان داده‌اند که روابط در مراحل‌های به دو دلیل ممکن است برآوردگاه تورش‌داری از پارامترهای عوامل مؤثر بر تاکارایی هزینه ارتقاء دهند. 1. ممکن است بین متغیرهای نهایی در تابع مرز و متغیرهای برون‌نوازی تابع توزیع تاکارایی همبستگی وجود داشته باشد. 2. در تاکارایی هزینه که در مرحله اول با خطأ تخمین زده می‌شود،
ممکن است خطا با متغیرهای بردوزا هم‌بستگی داشته باشد. آنها نشان دادند که اگر بتوان توزیع \(u_i(z, \delta) \) را به جوی مستقل از \(z \) و واپسی به \(z \) تجزیه کرد، علاوه بر تخمین آن با روش حداقل مربعات غیرخطی، می‌توان ضرایب تابع تولید و ضرایب تابع کارایی را در یک مرحله تخمین دز.

یک روش تجزیه تابع توزیع \(u_i(z, \delta) \) به حاصل جمع یک تابع معین از ۶ مانند Wang

\[
(u_i(z, \delta) = g(z, \delta) + u_i^*)
\]

(22)

این روش بر یکی از یک‌تایی کمکی در آمار ریاضی مبتنی است. در رابطه (22) \(u_i^* \) را توزیع پایای و \(g(z, \delta) \) را تابع مکانی می‌توان نامید. مشخصه اصلی خاصیت یک‌تایی مکانی این است که عوامل بردن فقط مکان توزیع را تغییر می‌دهد و بر شکل توزیع اثری ندارند، چون شکل توزیع به وسیله توزیع پایه تعیین می‌شود.

با استفاده از رابطه (22) معادله (21) را به صورت رابطه (23) می‌توان نوشته:

\[
c_i = c(w_i, p_i, \alpha_i) + v_i + g(z_i, \delta) + u_i^*
\]

(23)

رابطه یاد شده بر سه موضوع مهم اشاره دارد (Alvarez et al., 2006): ۱. شکل تابع توزیع کارایی برای تمام نگاه‌های داشت همانند، اما میانگین کارایی بین نگاه‌ها متفاوت است؛ ۲. با انتخاب تابع میانگین متغیری مناسب می‌توان یکجا خواسته اث عوامل بردن با کارایی را به سادگی کنترل کرد و آن را آزمود؛ ۳. تفسیر پارامتر \(\delta \) به توزیع کارایی بستگی ندارد و توزیع ساده میانگین‌گذاری تفسیر ساده ای را برای اث عوامل بردن با میانگین کارایی ارائه می‌دهد.

تحمیل کارایی انتقادی نگاه‌های دانش با استفاده از …
واحدهای تحقیق و توسعه در طرح آمارگیری مرکز آمار ایران در این سال را به چهار دسته می‌توان تجزیه کرد: ۱ واحدهای واپسینه به بنگاه‌های صنعتی؛ ۲ واحدهای واپسینه به دانشگاه‌ها و مرکز آموزش عالی؛ ۳ واحدهای واپسینه به جوی‌های علمی؛ ۴ واحدهای مستقل.

در این مقاله به واحدهای مستقل تحقیق و توسعه به عنوان بنگاه دانش توجه شده و تحلیل‌ها بر روی آن‌ها صورت گرفته است. تعداد این واحدها ۱۳۳ واحدها که ۲۱ واحدها از آنها دارای مآموریت خاص بودند، بنابراین، به عنوان واحدهای نامحسوس با واحدهای دیگر از دامنه تحلیل حذف شدند.

برای تخمین مرز الهیه کوششهای تحقیقاتی (۲۵) تابع الهیه به صورت کتاب دکلاد و توسعه به صورت نرمال بریزه برنده شود، بنابراین، الگوی مرس تصادفی الهیه کوششهای تحقیقاتی را به صورت تعادلی رگرسیون (۲۴) می‌توان نوشت:

\[l_c = \pi_0 + \pi_1 w_i + \pi_2 p_i + v_i + u_i \]

در این تعادله مفهوم منگرها و علایم به شرح زیر است:

- \(l_c \) تغییرات کل الهیه بنگاه دانش
- \(i \) هر هیچین بنگاه دانش
- \(w_i = W_{i1} + W_{i2} + W_{i3} \) که تغییرات معنادار در سال معین
- \(p_i = \text{میانگین سفر پروژه‌های تحقیقاتی در سال اجرا} \) در بنگاه دانش
- \(v_i = \text{جمله اختلال در فرایند بنگاه دانش} \) که به صورت نرمال با واریانس \(\sigma_v^2 \)
- \(u_i = \text{میانگین تغییرات الهیه در فرایند بنگاه دانش} \) که به صورت نرمال بریزه با واریانس \(\sigma_u^2 \)

نتایج تخمین تعادل‌ها (۲۴) در جدول ۱ نشان داده شده است. بررسی جدول ۱ نشان می‌دهد که تمام تغییرات مرس تصادفی الهیه معنادار هستند. ضریب ثابت بیانگر الهیه عوامل هم‌سان در بین بنگاه‌های دانش مانند متوسط دانش حاصل از هر پروژه تحقیقاتی و قیمت سرمایه است که به دلیل نبود داده‌های مناسب به عنوان تغییر در نظر گرفته نشده است. معنی داری این
ضریب بدین معنای که هزینه عوامل همینه داشته که به هزینه دانش قابل توجه و قابل تأیید است. معنی‌داری ضریب افزایش دستمزد متوسط دانشکاران بدین معنای که یک درصد افزایش در متوسط دستمزد دانشکاران هزینه کل پنگاه دانش‌را ۱۹۵۶ افزایش می‌دهد. این در حالت است که یک درصد افزایش در تعداد پروژه‌های تحقیقاتی هزینه کل پنگاه دانش را فقط ۶۹۰ درصد افزایش می‌دهد و این مسئله حکایت از اثر غالب دستمزد در هزینه‌های پنگاه دانش دارد.

در مز تصادفی هزینه واردات عامل کارآیی بسیار بالا و واردات جمله اخیر پایین است و این بدان معنی است که مقدار پارامتر لاندا (λ) بالاتر و بنابراین، ناکارآیی می‌تواند بالا باشد. پارامترهای پایین جدول ۱ نشان می‌دهد که فرضیه نیبود مولفه ناکارآیی در پنگاه دانش رد می‌شود. معنی در پنگاه دانش ناکارآیی هزینه وجود دارد.

جدول ۱: نتایج تخمین مز تصادفی هزینه کوشش‌های تحقیقاتی

<table>
<thead>
<tr>
<th>H0</th>
<th>ضریب</th>
<th>متغیر</th>
<th>پیش‌بینی (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب ثابت</td>
<td>l_W</td>
<td>$Z = 2.308$</td>
<td></td>
</tr>
<tr>
<td>ضریب ثابت</td>
<td>l_p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب ثابت</td>
<td>σ_u^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب ثابت</td>
<td>σ_v^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب ثابت</td>
<td>$\sigma^2 = \sigma_u^2 + \sigma_v^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب ثابت</td>
<td>$\gamma = \frac{\sigma_u^2}{\sigma_v^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>Log likelihood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>Wald chi2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>$Z = 2.308$</td>
<td>نیبود مولفه ناکارآیی: معنی به وجود نیست.</td>
<td></td>
</tr>
</tbody>
</table>
با توجه به بیان شده، این مسئله قابل طرح است که ناکارایی اتصالی در بیگانه‌ها با کجا مرتبط است؟ آیا باسی از روشهای مهره‌داری است یا به عوامل بیرونی و ویژگی بیگانه‌های دانش مانند اندام‌ها، تجهیزه، نوع مالکیت و تعامل با سازمان‌های محیطی بر می‌گردد؟ برای پاسخ به این سوال‌ها نخستین و تحلیل‌های اقتصادسنجی دیگری مورد نیاز است. همچنان که بیان شد، برای تخمین اثر عوامل برون‌ز دانش و ناکارایی او روشهای جدید به کار می‌رود.

روش دو مرحله‌ای و روشهای یک مرحله‌ای در روشهای دو مرحله‌ای ابتدا بدون نظر گرفتن عوامل برون‌ز میزان ناکارایی محاسبه می‌شود. آن گاه رابطه تابعی بین میزان ناکارایی با عوامل برون‌ز برآورد می‌شود. اما در روشهای یک مرحله‌ای با اعمال فرضی بر توزیع ناکارایی اثر عوامل برون‌ز و ناکارایی و تابع تولید به طور همزمان برآورد می‌شود.

(Wang and Schmidt, 2002) محققان نشان داده‌اند که روشهای دو مرحله‌ای تورش‌دار است و بنابراین، در اینجا از روشهای یک مرحله‌ای استفاده می‌شود. برای این منظور با توجه به خاصیت پایایی مکانیکی (یا مقياس‌گذاری جمع بی‌پایان) و تصمیم‌گیری - دیگری برای مرز معین هریک کوشش‌های تحقیقاتی، معادله مز تصادفی هریک کوشش‌های تحقیقاتی (25) را به صورت مورد می‌توان تولید.

\[l_c = a_0 + a_1 w_i + a_2 p_i + v_i + \delta_m I_i + \delta_u u_i + \delta_1 t_i + \delta_2 S_i + \delta_3 + v_i + u_i \]

(25)

در این معادله معنی علایم و متغیرهای جدید به شرح زیر است:

\(m_i \) = مالکیت بی‌گانه دانش (یک برای مالکیت دولتی و صفر برای مالکیت خصوصی).

\(u_i \) = همکاری تحقیقاتی بی‌گانه دانش (با دانش‌گاه‌ها).

\(I_i \) = همکاری تحقیقاتی بی‌گانه دانش (یک برای دانش‌گاه‌های تعداد برون‌زهای تحقیقاتی مشترک)

\(S_i \) = تعداد افراد شاغل در بی‌گانه دانش (یک برای دانش‌گاه فعالیت بی‌گانه دانش)
تعلیمی اقتصادی بین‌گه‌های دانش با استفاده از...

 derail = جمله تأکیدی پایه (تکراری ناشی از مهارت و روش‌های مدیریت) در مرحله تبدیل

$U^* = N(u, \mu, \sigma)$ توزیعی می‌شود.

نتایج رخداد آماره‌ای (46) در جدول 2 نشان داده شده است. بررسی جدول 2 نشان می‌دهد که علائم بر ضرایب مرز هزینه، سی به عوامل بروزاری مورد نظر شامل مالکیت، انداره بنگاه دانش و همکاری با سازمان‌های غیر دانشگاهی معنی‌دار هستند. معنی‌داری ضریب متغير مالکیت، معنی‌دارهای بنگاه‌های دانش خصوصی کاراپی اقتصادی با هزینه‌ای بالاتری دارند؛ و این امر با دلیل تشکیل نمی‌توان تحلیل کرد که محاسبه شدن بنگاه دانش و روابط مدیریت و دانشکاران پیچیده‌تر می‌شود و سرمایه اجتماعی کاهشیده می‌کند.

معنی‌داری ضریب همبستگی تحقیقاتی بین‌گه‌های دانش با سازمان‌های غیر دانشگاهی بین‌گه در نظر گرفته شده که همبستگی بین‌گه‌های دانش با سازمان‌های غیر آکادمیک به خصوصی بنگاه‌های صنعتی موجب یادگیری مدیریت هزینه در بین بنگاه‌ها می‌شود.

نتیجه آزمون فرضیه نیز مؤلفه تکراری ناشی از مهارت و روش‌های مدیریت نشان می‌دهد که این نوع تکراری معنی‌دار نیست؛ معنی‌دار نشان دهنده نشان و روش‌های نامناسب مدیریت در واقع مشکل تکراری را تا پیش.
<table>
<thead>
<tr>
<th></th>
<th>(\gamma)</th>
<th>(\mu)</th>
<th>(\sigma)</th>
<th>(\log \text{likelihood})</th>
<th>Wald chi²</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>111.11</td>
<td>111.11</td>
<td>111.11</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>222.22</td>
<td>222.22</td>
<td>222.22</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>333.33</td>
<td>333.33</td>
<td>333.33</td>
</tr>
</tbody>
</table>

Log likelihood, Wald chi², and \(\chi^2 \) values are calculated for different parameters. The table shows an increase in the log likelihood and Wald chi² values as the parameters increase.
اتنخابی مانند ماکتخت بینهایه داش، ااندازه بینهایه داش و همکاری تحقیقاتی با مراکز غیردانشگاهی در وقوع ناکارایی اقتصادی بینهایه داش دخالت دارند. ارگانی اندامنه بینهایه داش بر ناکارایی هزینه بیش از مفهوم است که بینهایه داش برای ارزیابی اقتصادی کمتری از بینهایه داش که جوکرتر دارند که ابتدای این مرحله چنگیز نیست. شاید بتوان این مفهوم را این گونه تحلیل کرد که با برگ سین بینهایه داش روابط و تفاوتهای مصرفی و روابط مدیریت و دانشگاهی بهبود می‌یابد. البته این بایسته این نظریه را که بینهایه داش برگیرد به دلیل داشتن اقتصاد مقياس ناکارایی اقتصادی پایینتر دارند، این نتیجه که ارگانی در همکاری تحقیقاتی بینهایه داش با سازمان‌های غیر دانشگاهی بدون ممناست که این همکاری ناکارایی هزینه و در نتیجه، گزینه بینهایه داش این که هزینه بینهایه داش را کاهش می‌دهد. این باعث می‌گردد که مرور نسخه‌های غیرکامپیوتری به خصوصی بینهایه صنعت موجب بیانگیری مدیریت هزینه در این بینهایه می‌شود. ارگانی ضریب متغیر مالکیت بیش ممناست که بینهایه داش خصوصی کاراپی اقتصادی بالاتری دارند، که شاید این امر باید دلیل باشد که عقلالیت تجاری در بینهایه خصوصی بالاتر از بینهایه دولتی است و در این زمینه تولید، تبدیل و تجاری سازی داش را بهتر و دقیق‌تر می‌کند.
برخلاف انتظار، ناکارایی ناشی از موانعی و روشهای مدیریتی در این هزینه می‌باشد. تعیین به احتمال زیاد نمی‌توان نقش مهارتهای پایین و روشهای نامناسب مدیریت در وقوع سیاست ناکارایی را تأثیر داد.
شایان ذکر است که ضمان نظری فراوان تولید داش در بینهایه داش و سیاست و پیچیده‌تر از بقیه است که در این مقاله ارائه شده است. بنابراین، به محافظان این جهت پیشنهاد می‌شود که مطالعات مربوط به تابع تولید داش و تابع کوشش‌های تحقیقاتی در بینهایه داش را با نگرش جدیدتر و جامع‌تری دنبال کنند.
References

