آموزش عالی، کارایی فنی و تغییرات بهره وری کل؛ شواهدی از صنایع تولیدی ایران

نویسندگان

استادیار گروه اقتصاد دانشگاه آزاد اسلامی واحد فیروزکوه

چکیده

هدف اصلی این مقاله برآورد اثر آموزش عالی بر تغییرات بهره‌وری کل و کارایی فنی در 135 صنعت تولیدی کد 4 رقمی طبقه‌بندی ISIC ایران در دوره 93-1383 بود. در این خصوص، از رویکرد دو مرحله‌ای استفاده شد. در مرحله‌ نخست شاخص بهره‌وری مالم کوئیست (MPI) و شاخص کارایی فنی با روش تحلیل پوششی داده‌ها (DEA) و تحلیل مرزی تصادفی (SFA) برآورد شد. یافته‌ها حاکی از آن است که میانگین شاخص MPI در این دوره برای تمام صنایع بیشتر از یک بود که نشان ­دهنده رشد مثبت بهره‌وری کل است. در حالی که متوسط تغییرات کارایی فنی صنایع در تمام سال­ها رشد منفی داشته، پیشرفت تکنولوژیکی عامل اصلی رشد مثبت بهره ­وری کل است. در مرحله‌ دوم اثر آموزش عالی بر تغییرات بهره‌وری کل و کارایی فنی در قالب رگرسیون داده‌های تلفیقی و با روش‌های اثرهای ثابت و گشتاورهای تعمیم‌یافته ‌(GMM) برآورد شد. نتایج نشان داد که آموزش عالی اثر مثبت و معنادار بر هر دو متغیر بهره‌وری کل و کارایی در صنایع تولیدی دارد، به ­گونه‌ای که کشش بهره‌وری کل نسبت به آموزش عالی بین 22/0-13/0 و کشش کارایی نیز بین 38/0-25/0 است.     

کلیدواژه‌ها

عنوان مقاله [English]

Higher education, technical efficiency and total productivity changes: evidence from Iran's manufacturing industries

نویسندگان [English]

  • M. Fathabadi
  • M. Soufimajidpour

Department of Economics, Islamic Azad University, Firoozkooh Branch,

چکیده [English]

The purpose of this article was to estimate the effect of higher education on total productivity changes and technical efficiency in the 4-digit classification code of ISIC in Iran during the period of 1994-04. In this regard, a two-way stage approach was used. In the first stage, Malmquist Productivity Index (MPI) and technical efficiency index by Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) were estimated. The findings indicated that the average MPI was more than one for all industries, indicating a positive growth in total productivity. While the average technical efficiency changes in industries have been negative for all years, technological progress is the main factor in the positive growth of total productivity. In the second stage, utilizing integrated data regression with Generalized Method of Moments (GMM), the effect of higher education on total productivity changes and technical efficiency was estimated. The results showed that higher education has a positive and significant effect on both total productivity and efficiency in manufacturing industries; somehow that the total productivity elasticity relative to higher education is between 0.13 – 0.23 and efficiency elasticity is between 0.28 – 0.38.

کلیدواژه‌ها [English]

  • Higher Education
  • Total productivity
  • Technical Efficiency
  • Fixed Effects
  • Generalized Moments
  • Iran industries
  • JEL Classification: C340
  • C610
  • G220
1. Abel, J.R., & Gabe, T.M. (2011). Human capital and economic activity in Urban America. Reg. Stud, 45 (8), 1079-1090.
2. Aigner, D.J., Lovell, C.A.K., & Schmidt, P. (1977). Formation and estimation of stochastic Frontier production function models. Journal of Econometrics, 9(1), 21-37.
3. Alirezaee, M.R., & Afsharian, M. (2007). A ccombination method for measuring TFP growth using DEA models and tornqvist productivity. Modern Human Scenes, 11 (3), 137-156 (in Persian).
4. Amini, A., & Neshat, H. (2005). Estimated time series of capital stock in the iranian economy during the period 1338-1383. Journal of Planning and Budgeting, 10(1), 53-86 (in Persian).
5. Annabi, N. (2017). Investment in education: What are the productivity gains?. Journal of Policy Modeling, 33(3), 499-518.
6. Annabi, N., Harvey, S., & Lan, Y. (2011). Public expenditures on education, human capital and growth in Canada: An OLG model analysis. Journal of Policy Modeling, 33, 852-865.
7. Arbia, G., Battisti, M., & Di Vaio, G. (2010). Institutions and geography: Empirical test of spatial growth models for European regions. Econ. Model, 27, 12-21.
8. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58 (2), 277-297.
9. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), 29-51.
10. Azariadis, C., & Drazen, A. (1990). Threshold externalities in economic development. Q. J. Econ, 105, 501-526.
11. Bakhtiari, S., Dehghnizadeh, M., & Hosseinpoor, S.M. (2014). Analysis of labor productivity and efficiency in the cooperative sector: A case study of the industrial cooperative sector in the province of yazd. Management & Development, 27(3), 47-73 (in Persian).
12. Baltagi, B.H., Egger, P.H., & Kesina, M. (2015). Sources of productivity spillovers: Panel data evidence from China. Journal of Productivity Analysis, 43, 389-402.
13. Banker, R.D., Charnes, A., & Cooper, W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9).
14. Barros, C.P., Barroso, N., & Borges, M.R. (2005). Evaluating the efficiency and productivity of insurance companies with a Malmquist index: A case study for Portugal. The Geneva Papers on Risk and Insurance Issues and Practice, 30, 244-267.
15. Battese, G.E., & Coelli, T.J. (1992a). A model for technical inefficiency effects in the stochastic Frontier production for panel data. Empirical Economics, 20(2), 325-32.
16. Battese, G.E., & Coelli, T.J. (1992b). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3(1), 153-69.
17. Benos, N., & Karagiannis, S. (2016). Do education quality and spillovers matter? Evidence on human capital and productivity in Greece. Economic Modelling, 54(2), 563-573.
18. Bhargava, A. (1991). Identification and panel data models with endogenous regressors. Review of Economic Studies, 58 (1), 129-140.
19. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143.
20. Bohm, S., Grossmann, V., & Steger, M. (2015). Dose expansion of higher lead to trickle-down growth?. Journal of Public Economics, 132(11), 79-94.
21. Bowlin, W. (1998). Measuring performance: An introduction to data envelopment analysis (DEA). Journal of Cost Analysis, 15(2), 3-27.
22. Bronzini, R., & Piselli, P. (2009). Determinants of long-run regional productivity with geographical spillovers: The role of R&D, human capital and public infrastructure. Reg. Sci. Urban Econ, 39, 187-199.
23. Caves, D.W., Christensen, L.R., & Diewert, W.E. (1982). The economic theory of index numbers and the measurement of input, output and productivity. Econometrica, 50, 1393-1414.
24. Chang, C., Wang, P., & Liu, J. (2015). Knowlage spillovers, human capital and productivity. Journal of Macroeconomic, 000, 1-19.
25. Charnesm, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429- 444.
26. Coelli, T., Rao, D.S., O'Donnell, C., & Battese, G.E. (2005). An introduction to efficiencyand productivity analysis. Second Ed. Springer.
27. Dabbagh, R., Kouhileilan, B., Javaherian, L., & Latifi, M. (2015). Examining technical efficiency and productivity of industries in western azerbaijan using the parametric and nonparametric methods. Majlis & Rahbord, (23)83, 305-333 (in Persian).
28. Emami Maibodi, A., & Izadi, Z. (2008). Measuring the technical efficiency and productivity of Iranian oil refineries. Quarterly Energy Economices Review, 5(17), 31-56 (in Persian).
29. Engle, R.F., & Granger, C.W.J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55, 251-276.
30. Fallahi, M.A., Kazemi, M., & Saeadzaeh, M. (2011). Factors affecting the ffficiency of iranian regional power companies with a view to information technology. IEJM, 6(12), 85-106 (in Persian).
31. Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66-83.
32. Farrell, M.J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. 120(3), 253-290.
33. Greene, W.H. (1993). Frontier production function. EC-9320-. Stern School of Business. New York University.
34. Hajikarimi, A.A., & Soltani, M. (2011). Study and analysis of Talent management measures: A case study of iran machinery and industrial equipment industry. Organization Cultural Management, 9(23), 95-116 (in Persian).
35. Horitz, S. (2009). What is human capital? Translation: Hassan Afroozi, Doniaie Egtesad Newspaper, 10, 29 (in Persian).
36. Kao, C.D. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90, 1-44.
37. Komijani, A., & Mahmodzade, M. (2009). The infrastructure, usage and spillover impacts of Information and Communication Technology (ICT) on Economic Growth (EG) in developing countries. Iranian Jornal of Trade Studies, 49(13), 31-74 (in Persian).
38. Kosfeld, R., & Lauridsen, J. (2004). Dynamic spatial modelling of regional convergence processes. Empir. Econ, 29, 705-722.
39. Kumbhakar, S.C. (1990). Production Frontiers, panel data, and time-varying technical inefficiency. Journal of Econometrics, 46(1.2), 201-11.
40. Kumbhakar, S.C. (2004). Productivity and efficiency measurement parametric econometric methods, Presented at The XIII International Tor Vergata Conference on Banking and Finance. Transparency, Governance and Markets. Rome, Italy (Dec 1-3 2004).
41. Lucas, R.E. (1988). On the mechanics of economic development. J. Monet. Econ, 22 (1), 3-42.
42. Mahmodzadeh, M., & Fathabadi, M. (2017). Driving factors of total factor productivity in iranian. Journal of Economic Modeling Research, 7(26), 141-165 (in Persian).
43. Malmquist, S. (1953). Index numbers and indifference surface. Trabajos De Estatistica, 4, 209-242.
44. Mankiw, N., Romer, D., & Weil, D. (1992). A contribution to the empirics of economic growth. Q. J. Econ, 107 (2), 407-437.
45. Meeusen, W., & van den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 18 ) 2(, 435-44.
46. Motafakker Azad, M.A., Pourebadollahan Covich, M., Fallahi, F., Ranjpour, R., & Sojoodi, S. (2014). Measuring the technical efficiency of iranian thermal power plants and analysis of its determinants: Application of stochastic nonparametric data envelopment method. Journal of Economic Research, 49 (1), 93-113 (in Persian).
47. Nelson, R.R., & Phelps, S.E. (1966). Investment in humans, technological diffusion, and economic growth. Am. Econ. Rev, 56 (1-2), 69-75.
48. Nishimizu, M., & Page, J.M. (1982). Total factor productivity growth, technological progress and technical efficiency change: Dimensions of productivity change in Yugoslavia,1965-78. Economic Journal, 9, 920-36.
49. Ogaundari, K., & Awokuse, T. (2018). Human capital contribution to economic growth in Sub-Saharan Africa: Dose health status matter more than education?. Economic Analysis and Policy, 215(2), 1-27.
50. Pablo-Romero, M. del P., & Gómez-Calero, M. de la P. (2013). A translog production function for the Spanish provinces: Impact of the human and physical capital in economic growth. Econ. Model, 32, 77-87.
51. Papageorgiou, C. (2003). Distinguishing between the effects of primary and post-primary education on economic growth. Rev. Dev. Econ, 7 (4), 622-635.
52. Pedroni, P. (2004). Panel cointegration; Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory, 20, 597-625.
53. Petrakis, P.E., & Stamatakis, D. (2002). Growth and educational levels: A comparative analysis. Econ. Educ. Rev, 21 (5), 513-521.
54. Pitt, M., & Lee, L.F. (1981). The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1), 43-64.
55. Ramos, R., Suriñach, J., & Artís, M. (2010). Human capital spillovers, productivity and regional convergence in Spain. Pap. Reg. Sci, 89 (2), 435-447.
56. Sargan, J.D. (1975). Testing for misspecification after estimating using instrumental variables. Mimeo. London School of Economics.
57. Sari, R., & Soytas, U. (2006). Income and education in Turkey: A multivariate analysis. Educ. Econ, 14 (2), 181-196.
58. Schmidt, P., & Sickles, R.C. (1984). Production Frontiers and panel data. Journal of Business and Economic Statistics, 2) 4(, 367-74.
59. Solow, R. (1957). Technical change and the aggregate production function. Rev Econ Stat, 39, 312-320.
60. Soukiazis, E., & Antunes, M. (2011). Is foreign trade important for regional growth? Empirical evidence from Portugal. Econ. Model, 28, 1363-1373.
61. Spehrdoost, H., Shaabadi, A., & Shojaei, A.R. (2013). Impact of foreign R&D spillover and human capital on technical efficiency of factors of production. IJTC, (17) 68, 149-174 (in Persian).
62. Statistics Center of Iran. The results of surveys of industrial workshops for more than ten employees and more from 2004 to 1393, www. sci.org.ir (in Persian).
63. Temple, J. (1999). The new growth evidence. Journal of Economic Literature, 37 (1), 112-156.
64. Vandenbussche, J., Aghion, P., & Mehir, C. (2006). Growth distance to frontier and composition of human capital. Journal of Policy Modeling, 33, 856-865.